Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nat Commun ; 15(1): 2996, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584165

RESUMO

Desalination could solve the grand challenge of water scarcity, but materials-based and conventional thermal desalination methods generally suffer from scaling, fouling and materials degradation. Here, we propose and assess thermodiffusive desalination (TDD), a method that operates entirely in the liquid phase and notably excludes evaporation, freezing, membranes, or ion-adsorbing materials. Thermodiffusion is the migration of species under a temperature gradient and can be driven by thermal energy ubiquitous in the environment. Experimentally, a 450 ppm concentration drop was achieved by thermodiffusive separation when passing a NaCl/H2O solution through a single channel. This was further increased through re-circulation as a proof of concept for TDD. We also demonstrate via molecular dynamics and experiments that TDD in multi-component seawater is more amenable than in binary NaCl/H2O solutions. Numerically, we show that a scalable cascaded channel structure can further amplify thermodiffusive separation, achieving a concentration drop of 25000 ppm with a recovery rate of 10%. The minimum electric power consumption in this setup can be as low as 3 Whe m-3, which is only 1% of the theoretical minimum energy for desalination. TDD has potential in areas with abundant thermal energy but limited electrical power resources and can contribute to alleviating global freshwater scarcity.

2.
Nature ; 628(8009): 910-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570680

RESUMO

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Mecanotransdução Celular , Modelos Moleculares , Humanos , Lipossomos/metabolismo , Lipossomos/química , Animais , Canais Iônicos/metabolismo , Canais Iônicos/química
3.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465747

RESUMO

Voltage-gated sodium channels (Naáµ¥) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naáµ¥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naáµ¥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naáµ¥1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naáµ¥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naáµ¥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naáµ¥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naáµ¥-related diseases.


Assuntos
Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Ativação do Canal Iônico/fisiologia , Domínios Proteicos , Canais Iônicos , Sítios de Ligação
4.
Sci Adv ; 9(49): eadi9566, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055819

RESUMO

Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the ß-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naïve αß and γδ T cells, even in the absence of transforming growth factor-ß. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.


Assuntos
Haploinsuficiência , Lectinas Tipo C , Animais , Humanos , Camundongos , Autoimunidade , Antígeno CTLA-4/genética , Lectinas Tipo C/genética
5.
Science ; 381(6659): 799-804, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590348

RESUMO

Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.


Assuntos
Canais Iônicos , Fatores de Regulação Miogênica , Humanos , Microscopia Crioeletrônica , Células HEK293 , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Doenças Linfáticas/genética , Mutação , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Domínios Proteicos , Mioblastos/metabolismo , Animais , Camundongos
6.
Biopolymers ; 114(7): e23540, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37254962

RESUMO

In the CryoEM-structure of the hSkMNaV1.4 ion channel (PDB:6AGF), the 59-residue DIS5-S6 linker peptide was omitted due to absence of electron density. This peptide is intriguing - comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete hSkMNaV1.4 channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to SkMNaV1.4 structure and function.


Assuntos
Simulação de Dinâmica Molecular , Canais de Sódio , Animais , Glicosilação , Canais de Sódio/química , Canais de Sódio/metabolismo , Mamíferos/metabolismo
7.
Biophys J ; 122(11): 1900-1913, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35927961

RESUMO

We investigate the effects on the distribution of lipids in the plasma membrane that are caused by the insertion of a protein, Piezo1, that significantly distorts the membrane toward the cytosol. From coarse-grained molecular dynamics simulations, we find that the major effects occur in the outer, extracellular, leaflet. The mol fraction of cholesterol increases significantly in the curved region of the membrane close to Piezo1, while those of phosphatidylcholine and of sphingomyelin decrease. In the inner leaflet, mol fractions of cholesterol and of phosphatidylethanolamine decrease slightly as the protein is approached, while that of phosphatidylserine increases slightly. The mol fraction of phosphatidylcholine decreases markedly as the protein is approached. Most of these results are understood in the context of a theoretical model that utilizes two elements: 1) a coupling between the leaflets' actual curvatures and their compositionally dependent spontaneous curvatures and 2) the dependence of the spontaneous curvatures not only on the mol fractions of the phospholipids, but also on the effect that cholesterol has on the spontaneous curvatures of the phospholipids.


Assuntos
Fosfatidilcolinas , Fosfolipídeos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas
9.
Nat Commun ; 13(1): 5746, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180431

RESUMO

Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , ATPases Transportadoras de Cálcio , Eritrócitos/parasitologia , Humanos , Indóis , Íons , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum , Sódio , Compostos de Espiro
10.
J Gen Physiol ; 154(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861699

RESUMO

Piezo2 is a mechanosensitive ion channel that plays critical roles in sensing touch and pain, proprioception, and regulation of heart rate. Global knockout of Piezo2 leads to perinatal lethality in mice, and Piezo2 gain-of-function mutations are associated with distal arthrogryposis, a disease characterized by congenital joint contractures. Emerging evidence suggests that Piezo channels (Piezo1 and Piezo2) can be regulated by their local membrane environment and particularly by cholesterol and phosphoinositides. To characterize the local Piezo2 lipid environment and investigate key lipid-protein interactions, we carried out coarse-grained molecular dynamics simulations of Piezo2 embedded in a complex mammalian membrane containing >60 distinct lipid species. We show that Piezo2 alters its local membrane composition such that it becomes enriched with specific lipids, such as phosphoinositides, and forms specific, long-term interactions with a variety of lipids at functionally relevant sites.


Assuntos
Artrogripose , Canais Iônicos , Animais , Artrogripose/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Mecanotransdução Celular , Camundongos , Fosfatidilinositóis , Tato
11.
PLoS Biol ; 20(5): e3001616, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35507548

RESUMO

Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite's susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite's susceptibility to lumefantrine and mefloquine-a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite's digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine's access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/metabolismo , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Malária Falciparum/parasitologia , Mefloquina/metabolismo , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/uso terapêutico , Parasitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
12.
J Chem Phys ; 156(16): 164503, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490021

RESUMO

Thermodiffusion is the migration of a species due to a temperature gradient and is the driving phenomenon in many applications ranging from early cancer detection to uranium enrichment. Molecular dynamics (MD) simulations can be a useful tool for exploring the rather complex thermodiffusive behavior of species, such as proteins and ions. However, current MD models of thermodiffusion in aqueous ionic solutions struggle to quantitatively predict the Soret coefficient, which indicates the magnitude and direction of species migration under a temperature gradient. In this work, we aim to improve the accuracy of MD thermodiffusion models by assessing how well different water models can recreate thermodiffusion in a benchmark aqueous NaCl solution. We tested four of the best available rigid non-polarizable water models (TIP3P-FB, TIP4P-FB, OPC3, and OPC) and the commonly used TIP3P and SPC/E water models for their ability to predict the inversion temperature and Soret coefficient in 0.5, 2, and 4M aqueous NaCl solutions. Each water model predicted a noticeably different ion distribution yielding different inversion temperatures and magnitudes of the Soret coefficient. By comparing the modeled Soret coefficients to published experimental values, we determine TIP3P-FB to be the water model that best recreates thermodiffusion in aqueous NaCl solutions. Our findings can aid future works in selecting the most accurate rigid non-polarizable water model, including water and ion parameters for investigating thermodiffusion through MD simulations.


Assuntos
Difusão Térmica , Água , Íons , Simulação de Dinâmica Molecular , Cloreto de Sódio
13.
Nature ; 605(7909): 349-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477763

RESUMO

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Animais , Autoimunidade/genética , Linfócitos B , GMP Cíclico/análogos & derivados , Guanosina , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
14.
Biophys Rev ; 14(1): 209-219, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340596

RESUMO

Piezo1 is a mechanically gated ion channel responsible for converting mechanical stimuli into electrical signals in mammals, playing critical roles in vascular development and blood pressure regulation. Dysfunction of Piezo1 has been linked to several disorders, including hereditary xerocytosis (gain-of-function) and generalised lymphatic dysplasia (loss-of-function), as well as a common polymorphism associated with protection against severe malaria. Despite the important physiological roles played by Piezo1, its recent discovery means that many aspects underlying its function are areas of active research. The recently elucidated cryo-EM structures of Piezo1 have paved the way for computational studies, specifically molecular dynamic simulations, to examine the protein's behaviour at an atomistic level. These studies provide valuable insights to Piezo1's interactions with surrounding membrane lipids, a small-molecule agonist named Yoda1, and Piezo1's activation mechanisms. In this review, we summarise and discuss recent papers which use computational techniques in combination with experimental approaches such as electrophysiology/mutagenesis studies to investigate Piezo1. We also discuss how to mitigate some shortcomings associated with using computational techniques to study Piezo1 and outline potential avenues of future research.

15.
Biophys J ; 121(2): 193-206, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34958776

RESUMO

Voltage-gated sodium channels (Nav) underlie the electrical activity of nerve and muscle cells. Humans have nine different subtypes of these channels, which are the target of small-molecule inhibitors commonly used to treat a range of conditions. Structural studies have identified four lateral fenestrations within the Nav pore module that have been shown to influence Nav pore blocker access during resting-state inhibition. However, the structural differences among the nine subtypes are still unclear. In particular, the dimensions of the four individual fenestrations across the Nav subtypes and their differential accessibility to pore blockers is yet to be characterized. To address this, we applied classical molecular dynamics simulations to study the recently published structures of Nav1.1, Nav1.2, Nav1.4, Nav1.5, and Nav1.7. Although there is significant variability in the bottleneck sizes of the Nav fenestrations, the subtypes follow a common pattern, with wider DI-II and DIII-IV fenestrations, a more restricted DII-III fenestration, and the most restricted DI-IV fenestration. We further identify the key bottleneck residues in each fenestration and show that the motions of aromatic residue sidechains govern the bottleneck radii. Well-tempered metadynamics simulations of Nav1.4 and Nav1.5 in the presence of the pore blocker lidocaine also support the DI-II fenestration being the most likely access route for drugs. Our computational results provide a foundation for future in vitro experiments examining the route of drug access to sodium channels. Understanding the fenestrations and their accessibility to drugs is critical for future analyses of diseases mutations across different sodium channel subtypes, with the potential to inform pharmacological development of resting-state inhibitors and subtype-selective drug design.


Assuntos
Bloqueadores dos Canais de Sódio , Canais de Sódio , Humanos , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia
16.
Methods Mol Biol ; 2402: 131-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34854041

RESUMO

Molecular dynamics (MD) simulations have become a widely used tool in the scientific community for understanding molecular scale phenomena that are challenging to address with wet-lab techniques. Coarse-grained simulations, in which multiple atoms are combined into single beads, allow for larger systems and longer time scales to be explored than atomistic techniques. Here, we describe the procedures and equipment required to set up coarse-grained simulations of membrane-bound proteins in a lipid bilayer that can mimic many membrane environments.


Assuntos
Simulação de Dinâmica Molecular , Bicamadas Lipídicas , Proteínas de Membrana
17.
Biophys J ; 120(24): 5553-5563, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34774501

RESUMO

Voltage-gated sodium channels play a vital role in nerve and muscle cells, enabling them to encode and transmit electrical signals. Currently, there exist several classes of drugs that aim to inhibit these channels for therapeutic purposes, including local anesthetics, antiepileptics and antiarrhythmics. However, sodium-channel-inhibiting drugs lack subtype specificity; instead, they inhibit all sodium channels in the human body. Improving understanding of the mechanisms of binding of existing nonselective drugs is important in providing insight into how subtype-selective drugs could be developed. This study used molecular dynamics simulations to investigate the binding of the antiepileptics carbamazepine and lamotrigine and the local anesthetic lidocaine in neutral and charged states to the recently resolved human Nav1.4 channel. Replica exchange solute tempering was used to enable greater sampling of each compound within the pore. It was found that all four compounds show similarities in their binding sites within the pore. However, the positions of the carbamazepine and lamotrigine did not occlude the center of the pore but preferentially bound to homologous domain DII and DIII. The charged and neutral forms of lidocaine positioned themselves more centrally in the pore, with more common interactions with DIV. The best localized binding site was for charged lidocaine, whose aromatic moiety interacted with Y1593, whereas the amine projected toward the selectivity filter. Comparisons with our previous simulations and published structures highlight potential differences between tonic and use-dependent block related to conformational changes occurring in the pore.


Assuntos
Anestésicos Locais , Canais de Sódio Disparados por Voltagem , Anestésicos Locais/química , Anestésicos Locais/metabolismo , Anestésicos Locais/farmacologia , Antiarrítmicos/farmacologia , Anticonvulsivantes , Sítios de Ligação , Humanos , Lidocaína/química , Lidocaína/metabolismo , Lidocaína/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.4 , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
18.
Eur J Med Chem ; 217: 113353, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773263

RESUMO

Advanced stage liver cancer is predominantly treated with the multi-kinase inhibitor sorafenib; however, this therapeutic agent lacks selectivity in its cytotoxic actions and is associated with poor survival outcomes. Herein we report the design and preparation of several thalidomide derivatives, including a variety of novel thioether-containing forms that are especially rare in the literature. Importantly, two of the derivatives described are potent antiproliferative agents with dose-dependent selectivity for tumorigenic liver progenitor cells (LPC) growth inhibition (up to 36% increase in doubling time at 10 µM) over non-tumorigenic cells (no effect at 10 µM). Furthermore, these putative anti-liver cancer agents were also found to be potent inhibitors of tumorigenic LPC migration. This report also describes these derivatives' effects on several key signalling pathways in our novel liver cell lines by immunofluorescence and AlphaLISA assays. Aryl thioether derivative 7f significantly reduced STAT3 phosphorylation (23%) and its nuclear localisation (16%) at 10 µM in tumorigenic LPCs, implicating the IL-6/JAK/STAT3 axis is central in the mode of action of our derivatives.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfetos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Hepatocelular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Estrutura Molecular , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química , Células Tumorais Cultivadas
19.
Phys Chem Chem Phys ; 23(5): 3552-3564, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33514952

RESUMO

The activity of voltage-gated ion channels can be controlled by the binding of photoswitches inside their internal cavity and subsequent light irradiation. We investigated the binding of azobenzene and p-diaminoazobenzene to the human Nav1.4 channel in the inactivated state by means of Gaussian accelerated molecular dynamics simulations and free-energy computations. Three stable binding pockets were identified for each of the two photoswitches. In all the cases, the binding is controlled by the balance between the favorable hydrophobic interactions of the ligands with the nonpolar residues of the protein and the unfavorable polar solvation energy. In addition, electrostatic interactions between the ligand and the polar aminoacids are also relevant for p-diaminoazobenzene due to the presence of the amino groups on the benzene moieties. These groups participate in hydrogen bonding in the most favorable binding pocket and in long-range electrostatic interactions in the other pockets. The thermodinamically preferred binding sites found for both photoswitches are close to the selectivity filter of the channel. Therefore, it is very likely that the binding of these ligands will induce alterations in the ion conduction through the channel.


Assuntos
Compostos Azo/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , p-Aminoazobenzeno/análogos & derivados , Compostos Azo/química , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Canal de Sódio Disparado por Voltagem NAV1.4/química , Ligação Proteica , Eletricidade Estática , Termodinâmica , p-Aminoazobenzeno/química , p-Aminoazobenzeno/metabolismo
20.
Biophys J ; 119(8): 1683-1697, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32949489

RESUMO

Touch, hearing, and blood pressure regulation require mechanically gated ion channels that convert mechanical stimuli into electrical currents. One such channel is Piezo1, which plays a key role in the transduction of mechanical stimuli in humans and is implicated in diseases, such as xerocytosis and lymphatic dysplasia. There is building evidence that suggests Piezo1 can be regulated by the membrane environment, with the activity of the channel determined by the local concentration of lipids, such as cholesterol and phosphoinositides. To better understand the interaction of Piezo1 with its environment, we conduct simulations of the protein in a complex mammalian bilayer containing more than 60 different lipid types together with electrophysiology and mutagenesis experiments. We find that the protein alters its local membrane composition, enriching specific lipids and forming essential binding sites for phosphoinositides and cholesterol that are functionally relevant and often related to Piezo1-mediated pathologies. We also identify a number of key structural connections between the propeller and pore domains located close to lipid-binding sites.


Assuntos
Anemia Hemolítica Congênita , Canais Iônicos , Animais , Colesterol , Hidropisia Fetal , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanotransdução Celular , Camundongos , Fosfatidilinositóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...